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ABSTRACT

In this paper we study the existence of positive solutions of semilinear

elliptic equations. Various possible behaviors of the nonlinearity are considered

and in each case nearly optimal multiplicity results are obtained. The results

are also interpreted in terms of bifurcation diagrams.
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SIGNIFICANCE AND EXPLANATION

In this paper semilinear elliptic equations are considered: these are
Laplace equations perturbed by a nonlinearity depending only on the solution wu.
This type of problem arises in many situation (theory of nonlinear diffusion
generated by nonlinear sources, theory of thermal ignition of gases, quantum field
theory, theory of gravitational equilibrium of stars, population genetics ....).
Since the solution r -presents a temperature, or a concentration, or a density ...
it is reasonable to restrict our attention to positive solutions of such equations.
Here we concider all possible types of nonlinearities, and in each case we give
nearly optimal existence results. These results are also explained using bifurca-

tion diagram representing the set of possible solutions.
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ON THE EXISTENCE OF POSITIVE SOLUTIONS
OF SEMILINEAR ELLIPTIC EQUATIONS

*
P. L. Lions

Introduction:

The goal of this paper is to give a survey concerning the problem of the existence of
positive solutions for semilinear elliptic problems: that is, we consider the following
problem

. ) 2 =
-Au = f{u) in 2, ue C ()
(0.1)

u>0 in 2, u=0 on 30 ;

where @ 1is a bounded regular domain in ]RN, and f(t) is some given nonlinearity.

We study all the possible behaviors of f and prove - or recall when these results are
known - not only the eventual existence of a solution of (0.1) but we also give multiplicity
results. In many case, we consider parametrized versions of (0.1) (take Xf(u) instead of
f(u) in (0.1)}, and we give "bifurcation diagrams" for the set of solutions of (0.1).

Such problems arise in a variety of situations - in the theory of nonlinear diffusion
generated by nonlinear sources, in the theory of thermal ignition of gases, (see
D. D. Joseph and T. S. Lundgren (36], I. M. Gelfand [31]), in quantum field theory and in
mechanical statistics (see W. Strauss [55], Coleman, Glazer and A. Martin (23], H. Rerestvcki
and P. L. Lions [7]), in the theory of gravitational equilibrium of stars (see D. D. Joseph
and T. S. Lundgren [36], P. L. Lions [42]).

Our main tools for proving existence and multiplicity results are topological decree
arguments (we shall also use variational techniques due to A. Ambrosetti and P. H. Rabinowitz
(4], P. H. Rabinowitz [52]); we also refer to H. Amann [1], [2] for multiplicity results which
are useful in the context of (0.1).

Of course the existence of a =solution (or of multiple solutions) depends significantly

on the assumptions made on f: we will first distinguish beotween two cases, the case when

f(0) - 9 and the case when  f(0) = 0.
T . e
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In addition in these two cases we have to consider different possibilities whether f
1 is superlinear or sublinear at +w,
The plan is as follows:

I. The case when f(0) = O:

I.1l: Superlinear nonlinearities
I.2: Sublinear nonlinearities

II. The case when f(0) > O:

II.1: Superlinear nonlinearities
IT.2: <Sublinear nonlinearities

III. The shape of the nonlinearity

I17.1: Buckles and multiplicity results
ITII.2: Bumps and the shape of the nonlinearity

IV. Variants and open questions:

IV.1l: Cnbounded domains

V.2 Upen questions

we would like to point out that all the results which follow can be extended to more
peneral second~order elliptice operators than -A and that nonlinearities which depend on
x{f{x,u)) may be treated as well, together with different boundary conditions.

Finaiiy in this paper we do not consider the question of asymptotically linear functions

£ even 1f some of the techniques described below give results.




I. The ~ase when f£(0) =0

I.1 Superlinecar nonlinearities:

In all that follows, we will assume that f is locally Lipschitz continuous from IR
into R and in this section we assume f£(0) = 0. By superlinearity, we mean the following
condition:

) lim £(0)e L > N
ot

where Xl is the first eigenvalue of (-A) with Dirichlet boundary conditions.

Our first existence result is due to D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum
[29), (30]:

Theorem I.1l: Let us a<sum~ that we have in addition to (1):

(2) Tm foe b« Moo
t*O+
. - . + . .
(3 Hm f{o T = 0, wien ;=E—_§—1_EN13,z<mLf_N=1,2 ;
t v4wo
ard etther
(4) .= ?1 T, such that if Tl is closed and there exists « > 0 such that at all

points of :1 all the scctional curvatures of 3% are bounded below by o and
there exist. x - BN nwuch that (x-xo,n(x)) <0, for x r T2 (where n{x) 1is_the

unit outward normal vector to 4 at x)

(%) finr' s ponincreasig for ot oo 0 (U= g5, Af N

| v

3; if N =1,2 this condition
18 r\u_t nu(:uﬁ;,_a\r_':').

Then, under these assumptions, there exists a soiution u  of

«

-fu = F(u) in a1, u ¢ CO()
(0.1)

u 0 in ., u=0 on 3

Femark T.l: Acsumptions () and (3) will be justified below; we helieve that (4) or (5) are
surely technical. et ous o add that ifF 0 = 1, ,  we do not need («) or (5), and if N =1
(3 s not nveded, and f N = 0 (1) mav be roplacea bt

_l_




a
(3") lim £(t)e" " =0, for some a < 2

t—’w
Remark I.2: There are other general existence results: we refer for example to A. Ambrosetti

and P. H. Rabinowitz (4], H. Brézis and R. E. L. Turner [19].

In (4], it is assumed (1) - (3) (actually stronger forms of (1), (2) are used) and
(6) 38 . (0,%0, 3t0 > 0 such that 8tf(t) - F(t) >0, for t > tO where
t
F(t) = | rf(s)ds.
0

In [19], it is assume (1), (2) and

(7 lim £()t” % = 0, with o = o= (N > 2)

fanasd

Compared to these results Theorem I.l appears to be the most general but the proof (see ([30])
uses the symmetries of A and it is not clear to extend it to more general elliptic operators.
On the other hand, the method used in [4] is valid for general equations of the type (0.1)
but with a variational structure. Finally, even if [19] appears to be the weakest result, it
extends to general equations of the type (0.1) even without a variational structure.

We now comment on assumptions (2) and (3): first, the fact that g}% is, in general,
the best exponent is well-known (see, for example, 5. I. Pohozaev [51), D. D. Joseph and
T. S. Lundgren [36]). Of course we cannot say it is necessary since if u 1is a solution of
{(0.1) for some f, we may change f£(t) as we want for t > [juf . and u will remain a
solution of (0.1). (More interesting examples may be found in P.LH. Rabinowitz (53],
H. Brézis and L. Nirenberg (18], J. Hempel {35]).

Now concerning (2) we just remark that if f£(t) = At + g(t) with X > X g(t)y > 0

1
for t » 0, then (0.1) has no solution: indeed let vy be a positive eigen-function
associated to )1 that is

. 2
—Avl = Alvl in 2, v, « C (), v, »0 in 2, v, =0 on 3l .

-4~
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Then, we multiply (0.1) by vl and we obtain after twou

Xl f uv, dx = 1 f uv, dx +  alwv,

Ee)

and this contradicts A > A

N
s

Nevertheless, something can be said when (2) 15 not cati

We will need some assumptions which insure frnat the

bounded in IG(Q): we will use the results of o, . e

R. D. Nussbaum [30].

Theorem I.2: Let us assumc that is convex and that
-1
(1) lim £(t)t B
toeie
(7) Tim —t-%w-z%l < 0, for some oo
tr+o  tTE(t)

(8) f is differentiable ncar O and
(9) f(t) > 0, for all t

*
Let A be the supremum of all X :» O such that there e

integrations by parts:

Ax v v rouv, dx

,f1ed (see Theorem I1.2 below).

wtions of (0.1) are a priori

Mguelredo, P. L. Lions and

t satisfies (3) and
aN

< No2 (if N - 3)

fr(m =1

> 0

xists a solution of (2.1 - 1)

2 -
(0.1 = 3) ~Au = Af(u) in €, u . C(D, u> 0 in

, there exis

%, u=0 on 2

ts at least one solution of

*
1) Then +» > i > Al and for 0 < X < A

(0.1 - A).

*

*
i) If x > Al, then for Al < X < X, there exist a

t least two solutions u u of

(0.1 - A) which are ordered that is: uy <u, on Q.

*
one solution of (0.1 - X ).

*
We will give below some conditions which insure that A > A

Remark 1.3: The convexity of the domain and the assumpt

which imply a priori bounds of the solutions of (0.1 -

’
1 2 —

In addition, there exists at least

1°

ion (7) are just technical assumptions

A)  in view of the results of [30].

Of course the theorem still holds under other assumptions which imply a priori bounds, as in

[30] or in [12]. The thcorem 15 still true without the

assumption (9) but if ()) 1s not

satisfied, f falls into a class of nonlinearities which will be investigated later on.




Before going into the proof of Theorem 1.2, we give a condition which implies 1 = 1

Corollary 1.1: Under the assumptions of Theorem 1.2 and if f(e) ~ ¢ <=0 for t ~ 0, t wmall,

*
the L TR W
then N

Proof of Corollary 1.1:

In view of Crandall-Rabinowitz result on bifurcation from a simple cigenvalue (sce [25])
there exists a connected component C in  (A,u) emanating from (Xl,o). Let r_l > 0 be
such that

f{t) <t for ¢t « (O,tl) -

We thus have solutions of (0.1 = A) for {x - 2 small and with |lul| < t. Now, if
()
Ao T (A,u) * C, we would have
-&u = Af(u) < )\lu in i, u >0 in &, u=0 on 3i .

This 1s not possible since \1 is the first eigenvalue. This contradiction proves that

*
Ao AL,
\l
Remark 1.4: If £(t) » t, for t small, t > 0; then locally ncar (,\1,0) the only
possible solutions (L,u) of (0.1 - \) are for 1 - \l.

broof of Theorem L..: Let us first remark that in view of assumptions (1'), (7) we know that

for all ¢,B - 1) there exists € >~ O such that, if (2,u) 1is a sclution of (5.1 - M)
with 1 < « - B, then Jull
C(l)
. - . *
In addition in view of Theorem 1.1, we just need to prove that if v~ ;1' then for
*
1 = v - v, there exist at least two salutions ul, u,  of (0.l - Y. To this end doet
- . -
(\1, ) be such that there exists a solution u of (0.1 - 1\“).
v
Let as prove that for 3 - (2,41 ), there exist two ordered solutions of (M1 - vy,

10

Weoars aoing to use a topological degree argument {see J. leray and O, fchauvder (41) or

L. Nirenberg [49] for the definition and basic properties of the topological dearece) . We

. . 1 - *
first define g compact map associated with the problem (001 = 4 for u . G 00 (), we
cr:oov - ¥ s the solution of
. e e e B .
[ I, - 1, -
[ A 1 (), u= 0 on ;




Lo

—av o= Af() in 9, v e wP@(p <®, v=0 on 30 ;

where we take f(t) = 0 if t < 0. Let C > 0 be such that all solutions of (0.1 - 1)

(that is all nonzero fixed points of KO) are bounded by € and such that HGH1 _ < C.
()

Since f is locally Lipschitz, there exists § such that
Af(t) + ut is nondecreasing for t ¢ {0,C] .
Finally we set: v = Ku is the sclution of
“hv b pv = Af(u) +wu in 2, v e WP(@)(p <®, v=0 on a0

Let us now define some open sets in Cé(ﬁ):

v

du
3 01 an < EO an on 3¢}

. 1 - : .
B = wu C”(n), ﬂuiil <C,u > e v in @,
’ Cr

where n  denotes the outward unit normal, and where v as in Corollary 1.1 is a positive

1
eigenfunction associated with Xl. The constant EO will be determined later on (we already
impose . to be small e¢nough such that u B, and such that Af(eovl) > Xleovl in §2).

- . Ju Ju
We also set: O = ju - B, u=<u in 3, == > - == on 0N}.
in In

We are going to prove that the topological degree of I - K is well defined on B and
on (@ (with respect to 0) and that its values are:

d(I-K, B, 0) = 0, d(I-K, 0, 0) = +1 .

This will wmply: d(1-K, B-0, 0) = -1, therefore there exists u, solution of (0.1 - 1)
and Hy -0, In particular u, A u is not a solution of (0.1 - ) and a straightforward
computation shows that, actually, u2 A U satisfies:

SAlu, A A(u, A ) in D'(W), uy A u e wé’”(u)

To conclude, that 1s to prove the existence of u we just have to notice that for ¢ small

cnouyh, eV, (with the same notations as 1n Corollary 1.1) is a subsolution of (0.1 - )
and TV, A 4. And thus there exists a solution uy of (0.1 - 1) satisfying:
9 u u2 A a mn
-7~




Now, we prove the claims on the topological degree.
first remark that one may choose

operator: Eeu = v defined by

{ —&v + Buv = S(Af(u) + pu) + (1-60)

Indeed, in view of [30], let us

C such that, if Ke denotes the following compact

+
(wa + 1)

vew P@ip<we, v=0 on 32 ;

where v > A1, then all fixed pointsg of fe {for 0 < 8

by C. 1In addition an easy arqument shows that one may choose €,

all fixed points 8

u 2 eov1. This is due to the fact that both ) and v

d(I-EB, B, 0) 1is well defined and independent of 6 €& [0

ie cannot have any fixed point because of the choice of

< 1) are bounded in C;(E) norm

small enough such that

u of ¥ (for 0 < 8 < 1) (distinct from 0 4if 6 = 1) satisfy:

are greater than A1. Therefore
+1]. But it is easy to see that

v and thus

d(I-x, B, 0) = d(I-ﬁb, B, 0) =0 .

Next, we prove that 4d(I-K, 0, 0) =

remark that we may choose C such that X maps ¢ into

if v = Xu, we have

= 1. Indeed, let us choose ¢ 1in (, and let us

0. Remark that if u e 0 and

-AV + v = Af(u) + pu < Af(W) + u

and by the strong maximum principle we conclude: v @ (). Therefore
A(T - (6K + (1-8)¢), O, 0) 1is well defined and is independent of 8 € [(0,1)]. 1In
particular:
a(1-x, 0, 0) = d(1-¢, 0, 0) = 1, since ¢ ¢ 0 .

In order to complete the proof of Theorem 1.2,
-
A < +e. And this is an easy consequence of (1') and (9
that there exists a > 0 such that f(t) > at for all

(N1 - X)) by vy and inteqgrating by parts, this yields

1
Q Q

the last thing we have to check is that

): Indeed these assumptions imply

t > 0. Now multiplyving

A, f uv Ax = f Xf(u)v1dx > f nvAx

Q




A
“ -
and therefore A < ;—, ani thus A < »,
Remark I.5: In the case where we have
. -1
lim f(t)t = 4o
t-*O+

and under the same assumptions as in Theorem I.2 (except (8) of course), then, by a similar
\

L 4 t
. proof to the preceeding one, there exists A < =@ such that for 0 < A < A , there exist

at least two solutions wuq, u, of (0.1 - 3) which are ordered that is: wu; < u, in &

L] -
and for A = A , there exists at least one solution of (0.1 - A ). This is the case for

example, when f£(t) = (t° + tP)(t > 0) with. 0 <8 <1, 1 < p < :%; (if N> 2).

Remark 1.5: We conjecture that Theorems I.1 and I.2 are not optimal in the sense that for

example in Theorem I.1, assumptions (4) or (5) should not be needed, or Theorem 1.2 should
be true just under assumptions (1') - (3) - (8) and (9). These extensions depend only on
B extensions of results implying a priori bounds ror solutions cf (0.1) or (0.1 - &) (see
also section IV.2 below).
Remark 1.6: To summarize the results of this section, we are going to gyive a few
"bifurcation diagrams”. Let us emphasize that these diagrams are formal and in some sense
are "minimal" diagrams: we will see in section III below that the set of solutions may be
a lot more complicated. The curves below represent the maximum norm of u as a function
N of A, whenever (u,A) 1s a solution of (0.1 =~ A). 1In all these diayrams we assume at
least that £ is superlinear (and satisfies (1')) and f satisfies (3), (9) (and other

precise assumption can be found in Theorem 1,1 and 1.2).

Case 1: f'(0) = O \
alf

Ex: £(t) = tP(1 < p < 22

=X PN

N\




Case 2: f'(0) = 1, £(t) > t for t > 0, t small

N+2 il
Ex: f(t)=t+tp(1<p<N-—_-2—) *

by ﬁ\
1 A
Case 3: f£'(0) = 1, f(t) <t for t > 0, t small
Ex: f£(t) = t{1 - sin t) + tP(1 < p < %) Hlull,)
; >
A g by
Case 4: lim £(t)t" | = 4o
t+0
+ [l
[+
Ex: f(t) = 7/t + tP(1 ¢ p <%)

\/

1.2. Sublinear nonlinearities.

In this section we still assume that f 1is locally Lipschitz continuous from R

into R and that f(0) = 0. In addition f will be assumed to be sublinear that is

(10) Tim £(t)t7) < Ay
4400

Our first existence result is well-known (see for example H. Amann [1], [2]
H. Berestycki and P. L. Lions (8]) and thus we will skip its proof:
Theorem 1.3: Let us assume, in addition to (10), that f satisfies:

{11} lim (0t ' > AL .

t+0 !
+

Then there exists a maximum positive solution of (0.1).

-10-
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Remark 1.8: Of course, if f satisfies (11) and
(12) £(g8) = 0, for some 8> 0 ;
then the conclusion of Theorem 1.3 holds, where maximum solution is replaced by maximum
solution among all solutions less than fA. Indeed by the maximum principle a solution of
(0,1) with f replaced by F(t) = £(t A 8) 1is a solution of (0.1) which is less than 8
and let us remark that f now satisfies (10).
Remark 1.9: In the case where f£(t) satifies (10, (11) and
(13) feyt™) ia strictly decreasing for t > 0
then it is well-known (see H. Berestycki [6]) for an elegant proof) that (0.1) has a unique
positive solution. 1In particular (13) is satisfied 1f f 1ig strictly concave.

We now turn to the parametrized version of (0.1), namely (0.1 = 1),

Theorem 1.4: We agsume that f satisfies:
1

t10°) lim f(e)t =0 (resp. f£(B) = 0 for some 8 > 0) .
t+t

(8) £ is differentiable near 0 and f£'(0) = 1 .

(9) f(t) > 0, for all t > 0 (resp. for all B> t > 0) .

*
Let ) be the infinum of all A > 0 such that there exists a solution of (0.1 = 1)

(resp., less than 8). Then we have

* *
1) 0 ¢ % < x1 and for A < X, there exists a maximum positive solution u, of

(0.1 = ) (resp., maximum among all positive solutions of (0.1 - 1) less than B).

*

i) If X < A

—_— 1’

*
then for A < A < A1, there exists a second solution u, of

(0.1 - X)) which thus satisfies: 0 < uy < u, in Q. 1In addition, there exists a maximum

*
positive solution of (0.1 - ) ).

*
Let us give immediately some condition which implies X < X1.

Corollary 1.2: Under the assumptions of Theorem 1.4 and if we have

f(t) >t for t >0, t small ;

then X < X,

-1 1=




Remark 1.10: If f(t) < t, for t small, t > G; then locally near (A,,O) the only
possible solutions (A,u) of (0.1 - A) are for X > A1.

Since the proofs of Theorem 1.4 and Corollary 1.2 are somewhat similar to those of
Theorem 1.2 and Corollary 1.1, we will skip them.
We want now to discuss the case where (8) is replaced by

(8") Tim f5(e)t ' <o .

t"O+

Theorme 1.5: We assume that f satisfies (8') and

(14) a = inf(t > 0, £{t) > 0) exists and a > 0
(15) lim f(t)t-1 =0 (resp., f(B) =0 for some B > a) ;
>0 t
24 >0 (resp. B > g > 0), F(g) > 0, where F(t) = f f(s)ds.

0
L ]
Let A be the infimum of all X > 0 such that there exists a solution of (0.1 = X)

-
(resp. less than g8). Then A is finite and positive and we have, if I 1is star shaped

.
i) For X 2 A, there exists a maximum positive solution uy of (0.1 - X) (resp.

maximum among all psotive solutions of (0.1 - A) less than B8).

*
ii) For X > X , there exists a second solution u, of (0.1 -~ ) which satisfies:

0 <u, <uy in Q.

If Q@ is not star shaped, i) is true for A large enough and ii) is replaced by

iii) If there exists a solution of (0.1 - A), then there exists a maximum positive

solution uy of (0.1 - ) (resp. maximum among all positive solutions of (0.1 - X) less

than B) and there exists a second solution u, of (0.1 - A).

We do not know if the assumption on @ 1is necessary.
Remark I.11: This result is essentially contained in H. Berestycki and P. L. Lions (8]
(see also P. H. Rabinowitz [52]). Remark that the fact that A' is finite (i.e. there
exist solutions for A large) is easily obtained, for example, by a variational
argument. Indeed (replacing if necessary f by f(t) = E(t A 8)) if we consider the

minimization problem:

-12-




N —

t
= min [ & Iva1? - AF(u)dx, where F(t) =] £(s)ds ;
2 J
0

I

1
ueHO(Q)

~

then this problem has always a solution ;1 and for X large enough u, >0 in @,

since IA ¢ 0. We will see below that in general 51 and u, do not coincide for

-
AP X .
Remark I.12: 1In a very special case (Q = [0,1], f(t) = -ut + vt2 -~ t3 with v > 0 and

*
v2 > 4u > 0) it is proved in Conley and Smoller [24] that for A > A there are exactly
*
two solutions (u1,u2) of (0.1 - 1)) while for A =2 there is a unique solution uy

*
of (0.1 - X ) (in addition a precise description of the stability of these solutions is

given). Remark that (8'), (14), (15) are satisfied in this case {(with

a = % (v - /vz ~ 4y}, B = 1 (v + /vz - 4u). This shows that Theorem I.5 is optimal in

~

this case.

- *

—
We claim that this example shows that IA >0 for A e {0,A ) where XA > A and

~ L
that u1 $ u1 if A e (A ,A ) - we use here the notation of Remark I.11 above. Indeed we

just need to show that I _ > 0: if one had I , < 0, then using the main result of

A A .
A. Ambrosetti and P, H. Rabinowitz [4] we would deduce that (0.1 - X ) should have a

solution u, with

[ v ? - A Fuax > 0
g2 2

* ~
In addition, one would have IA <0 for X > A and therefore this would imply u, > 0
in Q. Now because of the stability properties proved in [24], this would imply G1 = Uy

*®
for A > A . Now by continuity one would have

2

*
/ L wui? - 2 Fudx s 0 .
Q2 1 1

*
And this would contradict the unigueness of the solution of (0.1 - \ ).

-13-




*
Proof of Theorem I.5: We already know that X is finite and we will just prove that

w*
1 A is positive, 2) if there exists a solution of (0.1 =~ XO) and if Q is star

shaped that for all A > AO, there exists a solution of (0.1 - A). The remaining
statement of the Theorem is about the existence of uy and we refer to H. Berestycki and
P. L. Lions (8], [9] (the method uses a topological degree argument somewhat similar to the
one used in the proof of Theorem I.2).

]
1) A is positive:
indeed if (0.1 - X) had a solution u for ) arbitrarily small, for A small enough we
would have

A
-Au=xf(u)<2—‘u in 8, u>0 in 0, u=0 on 3Q .

And this is clearly impossible.
2) Let us suppose that there exists a solution u, of (0.1 - Ao) and let A > AO - we
may assume that  is star shaped with respect to 0. Then the existence of a solution of

(0«1 - A) 1is equivalent to the existence of a solution of

1
(16) -Au = X f(u) in (:—)/29 =Q', u>0 in Q', u=0 on 3Q'.
/]
1
Q' = {(;—)/Zx, x€eah .
1)

Remark that Q c 2'. Therefore using the general results of [7], if we extend u,; by 0
to ', we obtain a weak subsolution of (16). It is easy to build a supersolution above
Uy, using the assumption (15) and we conclude invelving classical results on sub and
supersolutions.

Remark I.13: Again we summarize the results of this section with a few "bifurcation
diagrams” (all the remarks made on those diagrams in Remark I.7 are still valid here). 1In

all these diagrams we assume at least that f is sublinear (and satisfies (10') or even

(15) - the other precise assumptions can be found in Theorems 1.3 - 5).




case 1: £'(0) =1, f(t) <t for t > 0, t small

Ex.: £(t) = ¢t = tP(1 < p < =) flull,

>
Xl by
Case 2: f£'(0) =1, f(t) » t for ¢ > 0, t small
2 3
Ex.: f(t) = ¢t + at” - 8t°, a, B8 > 0, H“H
(-]
4 S
case 3: £'(0) < 0 vM 7
3
Exe: £(£) = —ut + ve? = £, v > 0, vZ > 4y > 0. flufl,
|
!
i S
Remark: The case where % ()

-1
lim f(t)t = 4
t*O+
is nearly included in Theorem I.3. In this case one has a maximum positive solution of
(01 - A) for all X > 0.
. -1
Case 4: lim f(t)t = o

t+0
+

Ex.: f(t) =P, 0 < p <.

-15=-




I1I. The case when f£(0) > 0:

II.1. Superlinear nonlinearities

In this section we still assume that f is locally Lipschitz continuous from R
into R. We assume now that
(17) £(0) >0 .
We will restrict our attention to the case when f satisfies
(9) £(t) > 0, for all t > 0
(again let us indicate that the case when f vanishes for some reduces to the sublinear
case) .
Our first existence result is the following:

Theorem II.1: Let us assume that f satisfies (17), (9), (1') and (3), (7); and suppose

-
in addition that & is convex. Then there exists A > 0 such that

-
1) for 0 < A € A, there exists a minimum positive solution gx of (0.1 - 1)

2, uec?@, u>0 in 8, u=0 in ag.

-Au = Af{u) in
»

ii} If A > X , there exists no positive solution of (0.} = 1).

*
iii) If 9 < A <X, then there exists at least one positive solution uy of (0.1 =X}

distinct from wu, i.e. satisfying: u, > u

h oy i o

A

Remark II.1: Again the assumption (7) (and the convexity of §) is purely technical and
we believe it is not necessary: this assumption is used only in iii) in order to insure
some a priori estimate and the Theorem (and its proof) remains true with any assumption
(replacing (7)) insuring a priori bounds of the solutions of (0.1 = ) (such results can
be found in (30] and in {19]}).

This result is essentially due to D. G. de Fiqueiredo, P. L. Lions and R. D. Nugsbaum
(30). Statements i) and ii) are somewhat classical and easy to prove since once we know a

positive solution u of (0.1 - XA_) for some A. > 0, u
XO 0 0 XO

(0.1 - X) while 0 1is always a subsolution. Therefore i} and ii) follow easily from the

is a supersolution of

general results of H. Amann (1].
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We will see that the proof of iii) shows a little more than statement iii): if

*

0 <y < Ao < A are fixed, we will prove that there exists a connected component C in

o

R x c;(ﬁ) such that for all (A,u) €C  with A € [u ,A] then u solves (0.1 - A)

and is distinct from u In the convex case a lot more can be said (see [30] and Theorem

) .
II.2 below).
Remark II.2 The example f(t) = a + Bt with a, 8 > 0 shows that assumption (1') is
necessary in order to have

i) a solution for A = A'
ii] at least two solutions for 0 < X < A*.

Indeed in this case it is well-known that (0.1 - X) has a solution if and only if

. -1

A< = A1B and the solution is unique.

*
Proof of Theorem II.1: Let X < A , we know there exists a solution u , of
A
in Q. We are

*
(0.7 = X ). Thus u , is a supersolution of (0.1 =) and u < u
A A A
going to prove there exists a solution uy of (0.1 - X) such that
uA(B' in .
A
To this end we will use a topological degree argument (somewhat similar to the one used in

the proof of Theorem I.2).
In all that follows, C will denote a positive constant such that all solutions u

of (0.1 - X) satisfy: Uuu1 _ € C. In addition since f is locally Lipschitz, there
c ()
exists u such that

Af(t) + uyt is nondecreasing for t € [0,C] .

- . 1= . .
Finally we define a compact map K from C;(Q) into C_(1): v = Ku is the solution of

o

“Av + uv = Af(u) + pu in i, ve R, v=0 on 3 .

Let B and ( be the following bounded open sets in CS(E):
1 = . du
B={uec (), ftat <C,u>0 in Q, =<0 on 3R}
0 = an
c ()
3 3
0={ueB, u<u in @, Qa2 (u ) on 30} .
_X* an an _A'

_17_
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We claim now that the degrees of I - K on B, { (with respect to 0) are well
defined and are equal to:
a{1-x, B, 0) = 0, d(1-KX, 0, 0) = 1
The fact that these degrees are well defined is obvious from the definitions of B and
. 1In addition the computation made in the proof of Theorem 1.2 is easily adapted to this
case and it shows:
a(1-x, B, 0) =0 .

Fipnally 0 and u being respectively sub and supersolution of (0.1 ~ )) it is clear

L4

A
that K maps into , and since is convex this implies

d(1-x, o, 0) = 1t .
Indeed take ¢ €0 and define K, = (1-t)v + tk (for 0 <t < 1), K, maps 0
into 0 and thus
a(r-x, 0, 0) = a(I~K, , 0, 0) = a(1-¢, 0, 0) = 1t ,
since v e (.

We are now able to conclude since by the additivity of the Leray-Schauder degree, we

have:

arx~x, B0, 0) = -1
and this means there exists a solution u of (0.1 - X} in B ~ 5; and this proves the
theorem.

We now consider the case when f is convex; this case has been studied by many
authors: some simple interesting cases were discovered by H. B. Keller and D. S. Cohen
{371, H. B. Keller and J. P. Keener [3R]. More general results were obtained in T. Laetsch
{391, M. G. Crandall and P. H. Rabinowitz (26}, C. Eandle (5], F. Mignot and J. P. Puel
(471, D. G. de Figqueiredo, P. L. Lions and R. D. Nussbaum {30]. Some particular results

(in the case when £ 4is a ball) are described in J. Leray [(40), I. M. Guelfand [31]), D. D.

Jogseph and J. S. Lundgren [36), C. M. Brauner and B. Nicolaenko {17] (we will come back on
these particular results).
We give now a new existence result (some properties of the solutions may be found in

the references listed above).

-18-
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Theorem II.2: Let us assume that f satisgfies (17), (9), (1') and that f is strictly

* L 4
convex on R,. Then there exists A > 0 such that for 0 <A <A there exists a

minimum positive solution b, of (0.1 = X) (4in addition Y is of class C! with
*

respect to A) and such that for A > A there exist no positive solutions of

(0.1 = X),

If we assume in addition (3), (7) and that Q is convex, there exists a connected

* —
component C in (0,2 ] x CZ(Q) such that i) for all (A,u) € C, u is a positive

*
solution of (0.1 - A) (except if A =0, then u=0), ii) for all A € (0,) ) there

exists u distinct from u,

such that (A,u) e (; iii) (A’EA) eCiv) 1f Aw e C

and A * 0+, u § g then Hu“w + +o, Finally if we assume {4) instead of (7) and if the

*
convexity of Q then for all X € (0,A ) there exists a solution distinct from u, of

A d—

(01 = X))o
Remark II.3: The results of [36] show that the last part of the theorem is nearly
optimal. We conjecture that the fact solutions of (0.1 = X) distinct from B, lie on a
connected component ( is still true without assumption (7).
Let us finally indicate that the question of the existence of a (unique) solution of
(0.1 - A') is investigated in ([26] and [47].

Again assumptions (7) and of the convexity of §l are technical and are used in order
to insure a priori bounds of the solutions of (0.1 - A) (as in Theorem II.%1 - see Remark
II.1).

Remark II.4: It is shown in [36], that the set of solutions of (0.1 - A) may be rather
u

complicated since in some exarples (f(u) = e, 3 < N< 9 and Q being a ball) we have

the following "bifurcation diagram":

llull




B 48 ades ko o8

(in particular (0.1 - AO) has infinitely many solutions).

For the second part of Theorem II.2 we refer to [30] and we are going to prove only
the last statement (the method used here is very similar to the one used to prove Theorem

II.3 in (30]).

Proof of Theorem II.2: Let tn > 1, tn ¢+ +» such that f is differentiable at fn. Let

us define

£(t) = f(t )+ £(t )t -t )+ (t-t) for t>t
n n n n n n

£ (t) f(t) if t <t
n n

: . N+2
where Yy is any constant in (1, E:E)'

Since fn is convex and fn =f for t < tn' we claim that for n large enough
u, is still the minimum solution of the problem (0.1 - A} corresponding to f . Indeed

by (47], we have for n large encough that EA is solution and

where A? (resp. A1) is the first eigenvalue on HJ(Q) of the operatar
- - L] - - L]
4 - Afr(u,) (resp, -4 - Af'(u)) .

And this implies (see [47]) that EX is the minimum solution (for fn). Now, by [26], we

know that (0.1 - X) for f  has a second positive solution uoroup > by in f.

Moreover, from an easy inspection of the proof in (26), we see that

t
2
[Vu [© -~ F (u )dx| € Const., where F (t) = f f (s)ds.
Q n n' n n oM

lf

(ST

Since X1 = A? > 0, it is easy to prove that uun - Ex'm remains bounded away from O.

Now exactly as in the proof of Theorem I1.3 in [30], we derive a H1 bound on ug,
2

which implies a C bound on u,. It is then straightforward to pass to the limit.
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Remark II.5: In the last statement of Theorem II.2, we may as well replace (4) by (5) (the
congtruction of fn is a little more technical in this case).

We now summarize the results of this section by a bifurcation diagrm representing the

set of solutions of (0.1 = A) (under the assumptions of Theorems II.% or II.2)

nuan(

1. ..... __> by
X
Of course let us recall that when f has a supercritical growth (ex: f(t) = a + Btp, a,

+
g >0, p> g:g) various modifications of this diagram may happen (see [40}, [36)).
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II.2. Sublinear nonlinearities:

We still assume that f is locally Lipschitz continuous from R into R and that
f satisfies (17).

We have the following easy existence result:
Theorem II.3: Let us assume that f satisfies (17) and either (9) and

(10") lm f(&)t” =0

t oo

or that there exists B8 > 0 such that f(8) = 0. Then for all X > 0, there exists a

minimum solution EX of (0.1 = ).

Remark II.6: If we assume instead of (10'), %imw f(t)t:-1 = K ¢ +», then the existence

result is valid for all 1A € (0, A1|K).

The proof is a straightforward application of order arguments since 0 is a
subsolution and it is easy to build a supersolution (for example B is a supersolution in
the case when f(B8) = 0).

The following result shows that for some class of nonlinearities f, there is
uniqueness (but we will see in Section III.2 that this is not true in general).

Proposition IT.1: Under the assumptions of Theorem II.3 and if we assume in addtion that

f 1is concave th:n u, is the unique solution of (0.1 = )).

We believe this result is well-known but we were unable to find a precise reference

(see H. Berestyckl [6] for a related result). The proof is an easy adaptation of an

argument from [6]. We will denote by X1(-A - c{x)) the first eigenvalue of the operator

-4 - c(x) for some c(x) @ L ().

£(u,) - £(0)

Since we have: -AEX = {————Tr—————}gx + £(0), uy >0 in § and since f{0) > 0,
=X
necessarily we have:

-1
A (-8 - {f(g)‘) - £(0)u, ) >0

(1f u =0 this is to be understood as f'(0+) - which exists since f is concave).

-22-




On the other hand, if v is a solution of (0.1-} distinct from ux, we have

flvi-fly,)
) = (——-———————](v-gk), v=u, >0 in @

A gy A

=& (v-y

£(v)-£(u,)

(-8 - =N

(again (f(v) - f(EA))(V'EA)-' is to be understood as f'(2X+) on the set v = b, - that

is 9f1). But since f is concave, we have
(£(v) = £, ) (wu )" < (E(u) = £(v)iu, "
M S Y oY
This inequality contradicts the spectral informations given above in view of well-known

comparison principles of first eigenvalues.

The bifurcation diagram of this section looks like

‘luIIT

|

i




I1I. The shape of the nonlinearity and multiplicity results.

III.1. Buckles and multiplicity results.

Again we assume that f is locally Lipschitz continuous from R into R. In this
section we will consider the case when f changes sign and we will show how this type of
behavior may affect multiplicity results. The results of this section are adaptations or
extend results of H. Berestycki and P. L. Lions [10].

The first type of results we want to discuss concerns the case when f changes sign
once (or more) between 0 and some B such that £(8) = 0 and when f£{t) is positive
and superlinear for t > B. By sections I.2 and I1.2, we have existence results for
solutions whose maximum is less than 8. We want to prove here that under general
assumptions there exists another solution whose maximum is larger than 8.

More precisely we assume:

(18) IR > 0, £(8) = 0 and f(t) > 0, for t > B
. -1
(1) lim f(t)t >A1 P
t++oo

and of course f£f(0) » 0.

Theorem III.1: We assume that f satisfies (18), (1), (3), (7) and f£(0) » 0; and that

2 is convex. Then there exists u solution of (0.1) satisfying:

max u > B .

Q
Remark III.1: Again the convexity of § and the assumption (7) are purely technical
conditions, which are used here in order to ensure a priori bounds on solutions of
(0.1). In particular we could replace these conditions by other ones which imply a priori
bounds (see [30] and ([19]).
Remark III.2: Theorem III.1 can be combined with the results given in sections 1.2 and

II.2 to state general existence results. We give below some examples.
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Example IIT.!1: Assume that f satisfies

1) f£(t) > 9, for t € [0,qa)
ii) f(t) <0, for t € (a,B8) (Lf a =8 we just assume f(al = 0]
{1i1) f(t) > 0 for t € (8,+w)
and that f satisfies (1), (3) and (7).
Then there exists two pogitive solutions Uye u, (distinct) of (0.1) such that
0 < u1(x) < 8 < max uz, for all x in Q .
Q
Indeed we just need to combine Theorem IIT.1 with Theorem II.3 (remark that since u, wmay
be chosen to be the minimum solution and therefore to satisfy: u1(x) < uz(x) in ) .
Example ITII.2: Assume that f satisfies:
1) f(0) =0, £'(0) =1, €(t) > 0 for t € (0,a)
i1y f£(t) <0, for t € (q,8) [if a= g we just assume f(a) = 0]
iit) f(t) > 0, for ¢t € (B,+w)
and that f satisfies (1'), (3) and (7).
Then if X. is the infimum of all X > 0 such that there exists a solution of
(0.1-1) 1less than qa. Then we have:

»

-«
*) 0 < X £ X1 and for XA < ), there exists a positive solution u, of (0.1-))

maximum among all positive solutions of (0.1-1) 1less than a;

*

L 4
*) If A <« X1, then for \ < ) < X1, there exists a second solution of (0.1-))

)

satisfying: 0 < u, < u

s 1 in Q. In addition, there exists a maximum positive

*
sclution of (0.1=X ):
*) For all X > 0, there exists a positive solution us of (0.1-)) satisfying
max u_, > R .
3
Q
Indeed this is just the combination of Theorem 1.4 and Theorem III.1. (We could also

combine Theorem 1.5 and Theorem IIl.1 - see also the bifurcation diagrams below.)

Proof of Theorem III.1: We are going tn use a topolngical deqree arqument and we will

again nse the notations of the nronfs of Theorems I1.1 (or 1.2). Sinre we are interested

only in positive solutions we may assume




£(t) = £(t%) for all teRr .

We choose C > 0, large enough, 1y > 0, the ball B and the compact map K as in the
proo” of Theorem II,.1.

We already know that d(1-X, B, 0) = 0.

We finally define ( = {u £ B, u{x) < 8 in Q}. Since £f(B) = 0 it is clear that
X maps 5 into ( and since ( is convex, in the same way as in the proof of Theorem
I1.1, this implies: d(I-K, (J, 0) = 1. Therefore we have

d(1-X, B-0, 0) = 1
and this means that there exists a solution of (0.1) (with f(t) replaced by £(t*) thus
positive satisfying: max u > B - {ndeed remark that the case max u = § 18 ruled out by
Q Q

the strong maximum principle.

We now turn to another type of results: we consider the case when f satisfies:

(19) y > 8> 0 such that f(8) 0; f(t) <0, for t € (B,y) (if B = vy, this

assumption is not needed);

(15')1im f(('.)t:“1 =0 and f(t) >0 for t > y (resp. f(§ =0 for some &> y) ;
t o

4
(20) f f(s)ds > 0, for some 7 > B (resp. for some § > > R);
8
and of course €£(0) > 0.
We want to show how this implies the existence for A large enough of two solutions
uy of (0.1-1) such that 0 < uy < u, in  and max ui > y {(resp, § > max ui > y).

Q Q *
Theorem III1.2: We asgume that f satisfies (19), (15'), (20) and f(0} > 0. Let A be

the infimum of all X > 0 such that there exits a solution u of (0.1-)) satisfying

*
max v > B8 (resp. & > max u > 8). Then A ig finite and positive. If Q 1is star-
Q Q

shaped we have

*
i) for X > A, there exists a maximum positive solution wu, of (0.1-1) (resp.

maximum among all positive solutions of (0.1-)) 1less than §) such that

max u, > y.
Q2

1




-
ii) for X > A , there exists a second solution u, of (0.1=2) which satisfies:

0 < Uy < uy in 2, mgx uz > Y.
1f Q is not star-shaped, i) is_true for A large enough and ii} is replaced by

iii) if there exists a solution of (0.1-A) such that max u > Y (xesp. Y < max u < §)
4 f

then there exists a maximum positive solution u, of (0.1-3)

(resp, maximum among all

positive solutions of (0.1=A) 1less than J) such that max u, > y; and there exists a
Q
second solution u, of (0.1-1) which satisfies: 0 < uy < uy Iy 9, max u, > Y.
Q
Again, as in Theorem I.5, we do not know if the assumption that 2 is star-shaped is

necessary.
Remark III.3: Theorm II1.2 can be combined with the reswlts given in sections 1.2 and II.2
to state general existence results: indeed we already know existence results for solutions
less than 8 and Theorem III.2 give existence results for solutions whose maximum are
larger than 8. Instead of giving examples like Examples III. 1-3, we refer the reader to
the bifurcation diagrams below.
Remark III.4: This result is given in [10] (and extends a more particular, previous result
of K. J. Brown and H. Budin (21]}), where also some estimates of X‘ are also obtained.
Part i) of the Theorem is proved by a straightforward variational argument, while the proof
of part ii) requires a topological degree argument somewhat similar to those made above.
We now conclude again the section by a brief list of "bifurcation diagrams": let us
recall that the remarks made on the validity and optimality of these diagrams are still
valid for those below.
Case 1: {f(o) =0; £'(0) = 1; f(t) <t for t > 0, t small; f(t) > 0 for t € (0,a)

f(t) <0 for t € (a,B); f(t) > 0 for t > B; f superlinear.

N2
N-2

\’
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Case 2: £(0) = 0; £'(0) = 1; £(t) >t for t >0, t small; £(t) > 0 for

£(t) <0 for t € (a,B)s £(t) >0 for t > B; f superlinear.

flull,, A
Ex.: f£(t) = t + tF - gtd 4+ ¢
N+2 o s
large, < < [T

(8 ge l<p<g<rc«< N-2 .

1

A ?x

0 A

Casg 3: f£f(0) = 0; £'(0) < 0; £(B) =0, £(t) > 0 for t > B > 0; f superlinear.

Ex.: £(t) = -t + tF - ueT 4 et

+
(1<p<q<r<§—:§,0<v<<u<<l)

Case 4: £(0) > 0; f(t) > 0, for t € (0,a); f(t) < 0, for t € (a,8); £(t) > O,

for t € (B,+°); f superlinear.

HU“®A
Ex.: f£(t) = & - ptP + vl
(Aou,v >0, v small, 1 <p<qc«< :t;) -
V,.,——f—*"""¢’/////
0 s 2

~28-
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Ccase 5: £f(0) = 0; £°(0) = 1; £(t) <t for t > 0, ¢t

small; £(t) > 0 for t € (0,a)

f(t) <0 for t e (a,8), £(B) = 0; f sublinear for t > R.

llull,,

Ex.: f(t) =t - tp + utq - vtr i tY——

t
(lL<p<g<r, 0<vyc<<y <l ’/J”___,.____

1

!

_lif:/_mi. —— >y
0 Al A*

Case 6: £(0) = 0; £'(0) = 1; £(t) >t for t > 0, t small; f(t) > 0 for t € (0,a)

f(t) <0 for t € (a,8), f(B) = 0; £ sublinear for ¢t > 8.

HUHmT
!
Ex.: f£(t) =t + tP o T 4 e o ¢S ' ¢ Tme—
1
(lL<p<g<r<s, 0<v<<y<<l ’ //.————4‘"—
)
]
i i
I—'\ : >
*
S

Case 7: £(0) = 0: £'(0) <€ 0; f(a) = 0, £(t) < 0 for t € (a,B), £(B) = 0; f sublinear

for t » 2.

lull, i
N
Ex.: £(£) = -t + P - eF 0w o o8 !
(1'\[)<q"r'.“>,‘.)'n--\r-‘<u< 1)!
| i
N ¢
| \'\_
'
e e o b >
9] X* * !
1 \2
~29-




Case 8: £(0) > 0; £(t) > 0 for t € [0,a); £(t) < 0, for t € (a,B), £(B8) = 0; £ sub-

linear for t > B.

HUH,,,T
,K‘
Ex.: £(t) =1 - tf + pt9 - ve© !

i
i
(0O <p<g<r, 0 <v<<y <<l | v
l
|
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III.2. Bumps and the shape of the nonlinearity:

We want, in this section, to show how bumps or some "slightly oscillatory" shape of
the function f may affect the "bifurcation diagrams” or the multiplicity results. Let us
describe in some unprecise way two results we prove here: the nonlinearity fe(t) will
depend on a parameter € € [0,1) and in the figures below we present both the shape of

fe and the associated {(minimal) "bifurcation diagram.”

Example 1:
Figure 1;
£ 4 (full 4
\» ‘\\\\xxxx\\\‘\\\\-‘.%
0 e 0 A
Figure 2:
4 A
¢ w ] il
€1
0 < 51 < 1
——
o ¢ 0 o 7
Figure 3:
N A
f (t) / lull,
£2
0 < 62 < el <1 ‘
5 ey >,
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Figure 4:
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£ (t)
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<1
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Figure 3:
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We begin by explaining what Example 2 means: this will be clear in view of the two results
above:

Theorem III.3: Let f(t) be a locally Lipschitz function from R into R, satisfying:

(21) £(t) > 0 for t >0 (resp. for t € (0,a)), lim f£(t)t ' = 0

o+

(resp. f(a) =0) .

Then there exists a maximum positive solution GA of (0.,1~A) (resp. maximum among all

positive solutions less than o) and a minimum positive solution EX thus satisfying:

0 < N < GA in Q. Now, if we assume there exist 0 < X1 < XZ < +» such that for
Ae u1,x21

u, ¥ u

N b and lim *+ u 4 lim ¥+ u , then, for all X € (A1,A2) there exists

utA u 'EN

a third solution “A of (0.1-)) such that:

0 < uy < u, <u in Q& .

We now apply this theorem on the setting of Example 2.

Corollary III.1: Let (fc(t))ce[o 1 be a family of locally Lipschitz functions from R
I .

into R, satisfying

0 < f(t) for te€ [0,1), £ (1) =0

€ —-— €
£ (t) >0 for t € [0,a) and t € (a,1], £ (a) = 0; £ () = £ (t)
0 -_— -_— 4] € 0

+
on [0,(a=€) ] ;

fc(t) > fo(t) for t e [0,1) .
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Then there exists A > 0, and v, (resp. EA) for A 2 A satisfying: uA (resp. EA)

ig the maximum (resp, minimum) solution less than 1 of (0.1-1) - for f,{t) - and

0 < EA <a < m;x u, . 0 < EA < “A <1 in Q .

On the other hand, for all A > 0, there exists u

A€ (resp. Ex,c) satisfying: Y e

(resp. EX e) is the maximum (resp. minimum) solution less than 1 of (0.1-)) - for
’

- < <u < i .
fe(t) and 0 Eﬂ,e uA,s 1 in &
— * -
Now let A > A, there exists € _ > 0 such that for € € ¢ we have: u # u
—_— ———= o ————— ¢ ——— A,e 7 =A,e
* -
for all X e (A ,)). And for such € and A there exigts a third solution ux c of
’

(0.1-1) - for fe(t) - satisfying

0 < < i .
Ex,e < “x,e “x,s in @

The first part of Theorem III.3 and Corollary III.1 is deduced from the results of the

(in Theorem III.3) and of re'
,

u

preceding sections: indeed the existence of u A

22
9 e (in Corollary III.1) is deduced from section II.2 (this is a standard application of
super and subsolutions arguments since 0 is a subsolution and 1 is a supersolution, for
example, in the setting of Corollary 11I.1). And the existence of A., gx, GA (in
Corollary I1I.1) is deduced from section III.?1 (Theorem III.2).

Before proving Theorem III.3 (that is the existence of uA), we derive Corollary

I11.1 from Theorem III.3.

Proof of Corollary IIT.1: We first remark that since fE are nonnegative we have

obviously:

u. _, u are nonincreasing with A ,

in addition, since fe > fo, we have:

_— — *

> u for A > A .

> u for A > 0; uA’€ a

Ex,e =2
Now, to conclude, we just need to remark that if X < X, for € small enough we have

Indeed, if A < A

e T W
max u, € max u_ = a_ < a < max u « °
Q a A A MoA
-34-
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Therefore for € &« a - a_, u_is also a solution of (0.1-3) for fc(t) but, since we
A A
> u and that u

already know that u. X Y e

e is the minimum solution, we conclude:
’

=u for X < X, € small enough.

Proof of Theorem [Il.3: As remarked above, we already know the existence of

X and of uy i in addition we know that EX and ;

that for X € [A1,X21 uy # uy and let A € (A1,A2). To prove the exigtence of the third

u increase with A. We now assume

A
solution we are going to use a topological degree argument. To simplify, we will assume
that there exists a > 0 such that f(a) = 0.
Let us first introduce a few notations: first we replace f(t) by E(t) defined by:

f(t) = £(0) 1f € <0, £(t) = £(t) for t € [O,al, f(t) = 0 for t > a. Let b > % be
such that A;(t) + ut is nondecreasing, for X € [A1,A2J. We now introduce a cmpact map
K from C;(ﬁ) into C;(ﬁ): for u in C;(5\, v = Ku is defined by

~Av + Lv = XE(u) + uyu in 2, ve Cz(ﬁ), v=0 on 9N .

Remark there exists C > 0 such that IKul < Cc, for all u in ¢ (&) satisfying

'@
0 < us<a in .

We next define three open sets:

du

1 —
I = {u€cC (), 0 cu<a 1n R, =— <O on 32, Iu¥ < C)

0 on 1 =

c @)

1-— —_—

J={uec ),y <uda in ﬂ,%(%——[g)‘)on W, wu _ <c}
1 T c Q)
~ 1= ) )
J={uecy@, 0¢ucy in sz,o>ﬁ>ﬁ(g)‘) on 32, lus , _ < cl.
2 2 c )
1If J J #d, then necessarily ;X < u, in Q. Since we assume lim % ;X ¢ lim + u
1 2 uti Ut

and since we may take Ai,kz as near A as we want, we see that we may assume

We are going to prove that the following degreees exist and are equal to d(I-K,I,0) =

—_— = o~ ~

d(I1-K,J,0) = d(I-K,S,U) = 1, This is quite obvious since K maps I, J, J into I, J, J

and since I, J, J are convex. Therefore we deduce

A(I-K, I - (J 0" J), 0) = A(1-K,1,0) - d(I-K,J,0) - d(I-K,J,0) = -1

=35~
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and this implies there exists a solution uy of (0.1-A) which lies in I - (J n J).

Since GA lies in J and uy lies in 3, we obtain a third solution as stated in
Theorem III.3.
Remark III.5: In Corollarv 1II.1, we may replace the assumption fe(t) = fo(t) on
+
[0,(a=€) ] Dby:
fe(t) > fo(t) uniformly for t € (0,a] .

Then in the proof, we need to use a variational argument in order to prove that

* —
<a for A e [A ,A] and for € € €£_.

max u
~. 0

A L€

We now turn to a result concerning the Example III.1: for the sake of simplicity, we
are not going to state an abstract result like Theorem III.1, but instead we give directly
a result similar to Corollary III.1. Let us first state a few assumptions we are going to

need: let (fe(t))ee be a family uniformly (in ¢€) locally Lipschitz functions

(0,1)

satisfying
fE(O) =0, fé(O) exists and fé(O) =0, fs(t) >0 for t> 0,

fe(t) > fo(t) for t >0 ;

(21)
fo(t) >0 for t € (0,a) and t € (a,+r), fo(a) = 0;
+
£ (t) = £,(t) for t € [0,(a-e) 1
and
. -1

(22) lim fo(t)t = 4o

t+x
(23) lim £ (e N1 0 niformly in € e (0,1)

T 4o
(if N =1, we do not need this assumption).

We assume here (23) only to simplify our setting (this assumption is used in order to

obtain a priori estimates). We may now state our result.
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Proposition III.1: Under assumptions (21) - {23) on CE (e there exists

(6,1}’
*

A > 0, and u1

. .
X ui (for X > A ) satisfying: ul is a positive solution of (0.1-x)

A

2 . .
(for fo(t)) less than a and u is the maximum solution among all solutions less than

A

—_ *
a. In addition, let X > A , then there exists 60 > 0 such that for any ¢ < 50 and

. _ ;
for any X € (A ,\), ui (i = 1,2) are also solutions of (0.1-1) for fE(t} and in

addition there exists a third solution ux of (0.1~)) (for fs(t)) satisfying:

max u, > a.
Q

Proof of Proposition III.1: The first part of Proposition III.1 is deduced from Theorem

-— -
I.5. In addition we know that uf is increasing with respect to A. Now let X > A be

fixed, we have ror i € [\, ]

max u, € max u_ = a' < a .
M I A
a-a’ *
Now, let us choose :0 = 3—— A1, It is clear that for ¢ < 60 and for A € (X ,A),
u; (i = 1,2) are solutions of (0.1-A) for fe(t). And we are going to prove the

existence of a third solution uy by a topological degree argument.
+ ~
We first introduce a few notations: we replace fe(t) by fe(t ) = £ (t) and we
[

choose u > 0 such that A Ee(t) + Pt is nondecreasing for t € a and for X e (X ,K].

. 1= . 1 = .
We next define a compact map KC from CO(R) into CO(Q): for u in C
is defined by

~ . 2 = .

~Av + uv = ) fc(u) +yu in W, ve Cc (R}, v=0 on 38 .
We finally chouvse C large enough such that, in particular, all solutions of (0.1-1) for
fe(t) (e € {0,1]) are bounded by C in the space C1(§) - this is possible because of

the assumptions (22) ~ (23) which imply, in view of [19], the a priori bounds.

We now define two open sets:

B = {uechd, tu < c}
0 1
C ()
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As in the proof of Theorem I.2, we can prove that d(I-K,B,0) exists and is equal to:
d(I-Ke,B,O) = 0.
We want to prove now that d(I-Ke,0,0) is well-defined and is equal to 1. Indeed if it

were not defined, this would imply the existence of a solution u of (0.1-1) for fe(t)

. . + . +a'
satisfying: 0 < u < i in 2 and max u = aza .« Since fe‘t) = f(t) for
ata’ ;
t e (o0, 2 1, if € < Egr @ is also a solution of (0.1=)} for fo(t) but
2 A . . ; .

max u > max uy and this is impossible since ui is the maximum solution (among solutions

Q Q
less than a). Therefore d(I—KE,O,O) is well-defined for € < eo and the argument given

above shows: d(I-KE,O,O) = d(I-KO,O,O), for 0 < e < €o+ Next, we remark that all

solutions less than a of (0.1-1) for f£,(t) satisfy

a+a’

2
max u € max u, = a'

<Ca .
Q Q A

Therefore if J = {u@ B, ~1 < u<a in §}, we have:
a(1-Ky,9-0,0) = 0.
And we deduce d(I—Ke,0,0) = d(I-KO,J,O), for 0 < g € €5t But K, maps 7 into J
and J 1is convex and this implies (see similar arguments given in the preceding sections):
d(I-KO,J,G) = +1,

Hence

d(I-Ke,B-a,O) = Q(I-K_,B,0) ~ &(I-K_,{,0)

= -d(I-KO,J,O) = =1 .

And we are able to conclude.
Remark III.6: We want to conclude this section by remarking the two examples given above
and the results we have proved are only examples of a general feature: in particular one

can build other examples by changing the behavior of f near 0. The general feature is

that large bumps in the shape of the nonlinearity may create two bending points {(as in

Figuree 3 in Examples III.1 and IIl.2) and we could combine the arguments given above with

the results of sections 1, II and III.1.

-318-




-y

Iv. Variants and open questions:

IV.1: Unbounded domains.

We are still concerned with the problem (0.1) but we assume that Q is unbounded

and hence we consider the problem:

-t =f(u) in @, ueck®, u>0 in 0
(24)

u=0 on 3R, ulx) +0 as |x| » +x, x € q .
In some cases this problem is more complicated than the one considered in the preceding
sections since in view of the results of M. J. Esteban and P. L., Lions [27], (28] the
geometry of {1 seems to play an essential role. Let us recall a result taken from ({27}

(the proof is based on an extension of a powerful identity due to S. Pohozaev {51]):

Theorem IV.1: Let f(t) be locally Lipschitz from R into R and suppose that

£(0) = 0, If we assume that  satisfies

(25) X € RN, Ixl = 1 such that n(x) *« x >0 on 23R and
nix) « x £0 on 232 .

Then, if u satisfies

-fu = flu) in 2, u=0 on W, wueL(RnB) R<
124")
7 e i), rw) e L

where F(t) = f; f(s)ds, necessarily we have
u =0
Very few existence results for (24) are known except in the case when @ = RN (or
when ¢ 1is a band [16]): in this case a nearly optimal existence result is given in H.
Berestycki and P, L. Lions (7] (see also {11]), ([12), [14]) which we recall here:

Theorem IV.2: Let N » 3 and let f be a continuous function from R, into R

satisfying f(0) = 0 and

~19-




_ ht2
(26) Tim re)t™ co, witn 222 | T foe " <o
t+0 ,+o t+too
+
(27) F(g) > 0, for some >0 .

Then there exists u € Ci(ln), spherically symmetric, positive, decreasing with respect

to r = [x|, satisfying

N

(28) -tu = flu) in R, v e t2(®), Flu) e L (&Y, u e L2V (N2)

= .

Remark IV.1: Under quite general assumptions it is known (see B. Gidas, Wei-Ming Ni,

L. Nirenberg [32), [33)) that any positive solution of (29) is necessarily radial (up to a
tranglation, of course). In addition some results conerning the uniqueness or the non
uniqueness of the positive radial solution are known (see [50), (46], (13]).

Remark IV. 2: Theorem IV.2 extends some particular results proved by C. V. Coffman [22]),
Ryder [54], Nehari (48], M. S. Berger [15], W. Strauss (55} and Coleman, Glazer and Martin

[23].
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IV.2 QOpen questions:

We now conclude with a list of open questions
{a) the main open question concerning the problem considered here is the proof of a priori

bounds of solutions u of (0.1) where f satisfies only

Lim £t ' > Ayr lim ey NFD/N=2) e N3
t t+t®

The best result in this direction is given in [30] (see also (19} and B. Gidas and
J. Spruck [34]).
(b) it is known that, if @ is star~shaped, there is no solution of (0.1} if
f£(t) = tP anda p > s;% {for N » 3). On the other hand, it is very easy to realize that
if Q 1is ring shaped (9 = {Ix| € (a,b)}) then (0.1) has a solution for f(t) = cP
and 1 < p < w, It would be interesting to understand the relation between the geometry of
@ and the existence of solutions of (0.1) for supercritical nonlinearities (some related
results are given in J. Hempel {35] and in H. Brezis and L. Nirenberg [18)).
(c) an important question for applications is to extend the results concerning (0.1) to
systems of the type
-a; = £ (u,...u) din 9, u e A, u, >0 in Q u =0 on 3 .
Very few results are known for such systems.
{d) a few qualitative properties of solutions (0.1) are known: symmetry properties
(B. Gidas, Wei-Ming Ni and L. Nirenberg {32], {33]), behavior in the neighborhood of
igolated singularities (C. Loewner and L. Nirenberg {49], L. Veron [S56], H. Brezis and
L. Veron (20], P. L. Lions [43], B. Gidas and J. Spruck (34!j. A natural question
which remains open is to deduce whether solution u of (0.1) in convex domains have
convex level sets (i.e. {u > t} 1is convex). 1In a very special case
(E(t} = at = ut®, A,y > 0, p > 1) this is proved in P. L. Lions '44] (actually it is
proved that u 1is Log concave, which implies in particular the convexity of level

sets),

-41-




(e)

(f)

{9)

(\1

it would be interesting to understand the relation between the geometry of § and the
existence (or non existence) of solutions of (0.1) when § 1is unbounded (see
section IV.1 above).
a difficult question concerns the uniqueness problem for (0.1) or to prove exact
multiplicity results: very few are known (see the references in the sections above)
related problems concern the existence of solutions u of

-2 = f£(x,u) in R uec M, u=0 on | s
with non constant sign and where f(x,0) E 0. A lot of partial results are known and
we do not want tc give any references, but at the moment there is no general
understanding of this question. Let us also remark that this seems to be more a
challenging mathematical question than a question important for applications since in
nost of the apvlications where such problems arise, u represents a concentration or
a temperature or a density and thus has to be nonnegative (and thus the problem
reduces to (0.1)).
a totally formal way of guessing how looks the bifurcation diagram of solutions of
(0.1-1) {s to replace the operator -Au by A1u (and (0.1-1) reduces to a simple

equation \1t = \f(t)). This often gives a good qualitative account of the solutions

set but it may be completely false as the following example show: take f(u) = e,

N = H‘(ball), 3 <N <9 aince in this case there exists xo > 0 such that (0.1-\0)

has infinitely many solutions (see (36A]} while the equation X1t = Aet has at most

two solutions.

It would be interesting to show a more rigorous connection between (0.1 - 1) and the

equation A1t = Af(t). Remark also that in the case of Neumann boundary conditions

= 0) this simple equation just gives all constant solutions of (0.1 - }).
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